Homological transcendence degree

نویسنده

  • JAMES J. ZHANG
چکیده

Let D be a division algebra over a base field k. The homological transcendence degree of D, denoted by HtrD, is defined to be the injective dimension of the algebra D⊗k D ◦. We show that Htr has several useful properties which the classical transcendence degree has. We extend some results of Resco, Rosenberg, Schofield and Stafford, and compute Htr for several classes of division algebras. The main tool for the computation is Van den Bergh’s rigid dualizing complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

6 A ug 2 00 5 HOMOLOGICAL TRANSCENDENCE DEGREE

Let D be a division algebra over a base field k. The homological transcendence degree of D, denoted by HtrD, is defined to be the injective dimension of the algebra D⊗k D ◦. We show that Htr has several useful properties which the classical transcendence degree has. We extend some results of Resco, Rosenberg, Schofield and Stafford, and compute Htr for several classes of division algebras. The ...

متن کامل

Types of transcendence degree 1 are separably thin

We prove that the types in Separably Closed Hasse Fields which have transcendence degree 1 are separably thin

متن کامل

Cycles over Fields of Transcendence Degree One

We extend earlier examples provided by Schoen, Nori and Bloch to show that when a surface has the property that the kernel of its Albanese map is non-zero over the field of complex numbers, this kernel is non-zero over a field of transcendence degree one. This says that the conjecture of Bloch and Beilinson that this kernel is zero for varieties over number fields is precise in the sense that i...

متن کامل

The amenability and non-amenability of skew fields

We investigate the amenability of skew field extensions of the complex numbers. We prove that all skew fields of finite Gelfand-Kirillov transcendence degree are amenable. However there are both amenable and non-amenable finitely generated skew fields of infinite Gelfand-Kirillov transcendence degree. AMS Subject Classifications: 12E15, 43A07

متن کامل

Computably Categorical Fields via Fermat's Last Theorem

We construct a computable, computably categorical field of infinite transcendence degree over Q, using the Fermat polynomials and assorted results from algebraic geometry. We also show that this field has an intrinsically computable (infinite) transcendence basis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008