Homological transcendence degree
نویسنده
چکیده
Let D be a division algebra over a base field k. The homological transcendence degree of D, denoted by HtrD, is defined to be the injective dimension of the algebra D⊗k D ◦. We show that Htr has several useful properties which the classical transcendence degree has. We extend some results of Resco, Rosenberg, Schofield and Stafford, and compute Htr for several classes of division algebras. The main tool for the computation is Van den Bergh’s rigid dualizing complex.
منابع مشابه
6 A ug 2 00 5 HOMOLOGICAL TRANSCENDENCE DEGREE
Let D be a division algebra over a base field k. The homological transcendence degree of D, denoted by HtrD, is defined to be the injective dimension of the algebra D⊗k D ◦. We show that Htr has several useful properties which the classical transcendence degree has. We extend some results of Resco, Rosenberg, Schofield and Stafford, and compute Htr for several classes of division algebras. The ...
متن کاملTypes of transcendence degree 1 are separably thin
We prove that the types in Separably Closed Hasse Fields which have transcendence degree 1 are separably thin
متن کاملCycles over Fields of Transcendence Degree One
We extend earlier examples provided by Schoen, Nori and Bloch to show that when a surface has the property that the kernel of its Albanese map is non-zero over the field of complex numbers, this kernel is non-zero over a field of transcendence degree one. This says that the conjecture of Bloch and Beilinson that this kernel is zero for varieties over number fields is precise in the sense that i...
متن کاملThe amenability and non-amenability of skew fields
We investigate the amenability of skew field extensions of the complex numbers. We prove that all skew fields of finite Gelfand-Kirillov transcendence degree are amenable. However there are both amenable and non-amenable finitely generated skew fields of infinite Gelfand-Kirillov transcendence degree. AMS Subject Classifications: 12E15, 43A07
متن کاملComputably Categorical Fields via Fermat's Last Theorem
We construct a computable, computably categorical field of infinite transcendence degree over Q, using the Fermat polynomials and assorted results from algebraic geometry. We also show that this field has an intrinsically computable (infinite) transcendence basis.
متن کامل